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a b s t r a c t

In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan, People’s
Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2) presumed to have jumped
species from another mammal to humans. This virus has caused a rapidly spreading global pandemic. To
date, over 300,000 cases of COVID-19 have been reported in England and over 40,000 patients have died.
While progress has been achieved in managing this disease, the factors in addition to age that affect the
severity and mortality of COVID-19 have not been clearly identified. Recent studies of COVID-19 in
several countries identified links between air pollution and death rates. Here, we explored potential links
between major fossil fuel-related air pollutants and SARS-CoV-2 mortality in England. We compared
current SARS-CoV-2 cases and deaths from public databases to both regional and subregional air
pollution data monitored at multiple sites across England. After controlling for population density, age
and median income, we show positive relationships between air pollutant concentrations, particularly
nitrogen oxides, and COVID-19 mortality and infectivity. Using detailed UK Biobank data, we further
show that PM2.5 was a major contributor to COVID-19 cases in England, as an increase of 1 m3 in the long-
term average of PM2.5 was associated with a 12% increase in COVID-19 cases. The relationship between
air pollution and COVID-19 withstands variations in the temporal scale of assessments (single-year vs 5-
year average) and remains significant after adjusting for socioeconomic, demographic and health-related
variables. We conclude that a small increase in air pollution leads to a large increase in the COVID-19
infectivity and mortality rate in England. This study provides a framework to guide both health and
emissions policies in countries affected by this pandemic.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In December 2019, a high number of pneumonia cases with an
unknown aetiology were detected in Wuhan, China. A molecular
analysis of samples from affected patients revealed that their
symptoms were caused by an infection with a novel coronavirus,
later named severe acute respiratory syndrome (SARS) coronavirus
(CoV) 2 (SARS-CoV-2), the pathogenic agent of coronavirus disease
19 (COVID-19) (Zhu et al., 2020a). Within five months, this disease
had affected more than 210 countries and became a global
pandemic, causing devastating consequences to public health
(Wang et al., 2020a). Coronaviruses are a genus of enveloped, non-
segmented, positive-sense RNA viruses belonging to the family
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Coronaviridae and classified within the Nidovirales order (Yi et al.,
2020). Historically, illnesses caused by coronaviruses have ranged
in severity, with some, including human coronaviruses-229E and
-OC43, causing common cold symptoms, but SARS-CoV and Middle
East respiratory syndrome coronavirus have initiated outbreaks of
life-threatening pneumonia (Yi et al., 2020). While the initial
symptoms of COVID-19 include fever with or without respiratory
syndrome, a crescendo of pulmonary abnormalities may subse-
quently develop in patients (Huang et al., 2020). According to
recent studies, most patients present with only a mild illness, but
approximately 25% of hospital-admitted patients require intensive
care because of viral pneumonia with respiratory complications
(Wang et al., 2020a).

While extensive research into the pathogenesis of COVID-19
suggests that the severe disease likely stems from an excessive
inflammatory response (Cao, 2020), the exact predisposing factors
contributing to increased clinical severity and death in patients
remain unclear. Individuals over the age of 60 years or with
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

AIC Akaike Information Criterion
AQ Air quality
BEIS Business, Energy and Industrial Strategy
CI Confidence intervals
CoV Coronavirus
COVID-19 Coronavirus disease 19
DEFRA Department for Environment, Food and Rural Affairs
DfT Department for Transport
GHGI Greenhouse Gas Inventory
HGV Heavy goods vehicle
LGV Light goods vehicle

MPRN Meter point reference numbers
NAEI National Atmospheric Emissions Inventory
NHS National Health Service
PCA Principal component analysis
PM Particulate matter
PM2.5 Particulate matter with an aerodynamic diameter

<2.5 mm
PM10 Particulate matter with an aerodynamic diameter

<10.0 mm
PHE Public Health England
SARS Severe acute respiratory syndrome
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
WHO World Health Organization
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underlying health conditions, including cardiovascular and chronic
respiratory diseases, diabetes, and cancer, are at the highest risk of
increased clinical severity and death (Verity et al., 2020). Since
several studies have shown that chronic exposure to air pollution
enhances both respiratory and cardiovascular toxicity (Faustini
et al., 2014), it has been hypothesised that air pollution may also
contribute to COVID-19 severity (Brandt et al., 2020; Conticini et al.,
2020). Early reports have shown that the geographical patterns of
COVID-19 transmission and mortality among countries, and even
among regions of single countries, closely align with local levels of
air pollutants (Conticini et al., 2020). For example, increased
contagiousness and COVID-19-related mortality in northern Italian
regions, including Lombardia, Veneto and Emilia Romagna, have
been correlated with high levels of air pollutants in these regions
(Conticini et al., 2020). This hypothesis has become increasingly
popular because despite the progress in characterising the clinical
features of patients with COVID-19, details regarding the risk fac-
tors for clinically ill patients remain elusive.

A recent analysis by the Lancet Commission indicated that air
pollution is responsible for 16% of global deaths, making it the
primary cause of preventable premature death worldwide
(Landrigan et al., 2018). Although the recent implementation of
emergency lockdown measures has contributed to a considerable
improvement in air quality around the world (Bherwani et al.,
2020; Gautam, 2020a, (Gautam, 2020b); Muhammad et al., 2020),
the levels of most air contaminants remain considerably higher
than the values recommended by theWHO in several countries (He
et al., 2020; Wang et al., 2020b). The rapid expansion of anthro-
pogenic activities such as transportation, industrial processes and
mining caused a widespread increase in many harmful pollutants
that pose a major risk to human health (Sharma et al., 2020). For
instance, prolonged exposure to common road transport pollut-
ants, including nitrogen oxides and ground-level ozone, can induce
oxidative stress and inflammationwithin the airways, inducing and
significantly exacerbating health conditions such as asthma,
chronic obstructive pulmonary disease, cardiovascular diseases and
diabetes (Guarnieri and Balmes, 2014; Strak et al., 2017). These
conditions have been shown to overlap with pathological features
of COVID-19 critical illness, reinforcing the hypothesis of a di-
chotomy between air pollution and COVID-19 (Conticini et al.,
2020; Wu et al., 2020). Furthermore, airborne particulate matter
(PM) was recently shown to increase the viability of SARS-CoV-2,
suggesting that direct microbial pathogenic transmission occurs
through the air and the opportunity for infection is increased in
highly polluted areas (Setti et al., 2020). Therefore, air pollution has
been suggested to contribute to COVID-19 severity, either directly,
by compromising the lungs’ immune response to the infection, or
indirectly, by exacerbating underlying respiratory or cardiovascular
2

diseases (Brandt et al., 2020; Conticini et al., 2020; Dutheil et al.,
2020). However, most studies have failed to account for multiple
confounding factors (Conticini et al., 2020; Ogen, 2020) while
others have focused on relatively large geographical regions (Cole
et al., 2020; Liang et al., 2020; Wu et al., 2020). A convincing link
between COVID-19 and air pollution can only be established by
combining data from available ambient sensors with individual-
level information, where possible, to reduce uncertainty in expo-
sure estimates based on ambient monitoring data.

Here, we aimed to explore the relationship between air pollu-
tion exposure and COVID-19 mortality and infectivity in England, at
the population- and individual-level. In the UK, adverse air quality
causes approximately 30,000 premature deaths a year, and the
concentration of most air pollutants is predicted to exceed limits
set by European Union (EU) legislation beyond 2030 (UK
Goverment, 2019; Pannullo et al., 2017). For instance, data
collected in 2018 shows that in England specifically, ambient ni-
trogen oxides concentrations exceed these limits in 89% of desig-
nated air quality assessment zones (Affairs, 2019). In addition,
England experienced the highest excess all-cause mortality rate in
Europe in the first five months of 2020 compared with 2015e19,
making it one of the world’s most affected countries by the COVID-
19 pandemic, according to recent data (Raleigh, 2020). These ob-
servations indicate that England provides a unique setting inwhich
to examine the link between air pollution and COVID-19.

In this study, we first investigated potential links between
regional and subregional variations in air pollution and population-
level COVID-19-related deaths and cases in England by employing
coarse and fine resolution methods. Next, we addressed these as-
sociations between air pollutants and the risk of COVID-19 infection
at the individual scale by analysing UK Biobank data obtained from
a cohort of 1464 subjects. Combining individual-level data on
COVID-19 with high-resolution air pollution data, we show a clear
link between long-term exposure to air pollution and COVID-19 in
England. There are important, practical implications from this
research. The identification of key modifiable environmental fac-
tors may contribute to mitigating the risk of COVID-19 and mini-
mise the impact of future pandemics. Moreover, increased
knowledge about the link between air pollution and COVID-19 may
be beneficial worldwide by informing public health measures and
disease management strategies in clinical practice.

2. Methods

2.1. Data sources for COVID-19 deaths and cases

Our study utilised regional-level, subregional-level and
individual-level information to estimate the relationship between
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air pollution and COVID-19 in England. For our initial regional
analysis, the number of patients infected with SARS-CoV-2 in En-
gland was obtained from Public Health England (PHE) and analysed
according to the following statistical regions: London, Midlands,
Northwest, Northeast and Yorkshire, Southeast, East, and South-
west England. Region-level data on the cumulative number of
SARS-CoV-2-related deaths in England was retrieved from the
National Health Service (NHS) (Table 1). This source provides one of
the most comprehensive region-specific records of COVID-19-
related deaths in England. The daily death summary included the
number of deaths of patients who died in hospitals in England and
had tested positive for SARS-CoV-2 at the time of death. While this
online repository is updated daily, figures are subject to change due
to a post-mortem confirmation of the diagnosis. Local authority-
level data on the cumulative number of COVID-19 deaths in En-
gland was provided by the Office for National Statistics (ONS)
(Table 1). This repository includes deaths of patients who died in
care homes or other places outside hospitals. All deaths are recor-
ded as the date of death rather than the day onwhich the deathwas
announced.

For our regional analysis, the cumulative number of COVID-19
cases and deaths was gathered from PHE (Table 1), and these
data include over 61,613 lab-confirmed cases and 7248 deaths re-
ported between February 1 and April 8, 2020. Local authority-level
models included COVID-19 data reported in England between
February and April 2020, which was approximately a month after
England was placed on lockdown. COVID-19 data used for this
analysis were obtained from the ONS and includes a total of 32,903
deaths and 103,409 lab-confirmed cases. As the cumulative number
of COVID-19 cases in England were reported according to different
time scales, COVID-19 cases used for this analysis include lab-
confirmed cases reported up to and including April 26 whereas
COVID-19 deaths include COVID-19-related deaths registered in
England up to and including April 31. The first death involving
COVID-19 in England occurred on March 2, 2020. Finally, for the
individual-level analysis, we obtained COVID-19 data from the UK
Biobank, where 1464 participants were tested for COVID-19 in
Table 1
Summary of data sources.

Data type Source

COVID-19 cases Public Health England (https://coronavirus.data.gov.uk/#

COVID-19 deaths (regional) National Health System (https://www.england.nhs.uk/st
statistical-%20work-areas/covid-19-daily-deaths/)

COVID-19 deaths
(subregional)

Office for National Statistics (https://www.ons.gov.uk/
peoplepopulationandcommunity/birthsdeathsandmarria
bulletins/deathsregisteredweeklyinenglandandwalespro
weekending1may2020/)

COVID-19 cases (subregional) Public Health England (https://coronavirus.data.gov.uk/#

Nitrogen dioxide, nitrogen
oxide and ozone
concentrations

European Environmental Agency (EEA)(https://www.eea
data-and-maps/data/aqereporting-8)

Population data, mean
annual earnings and
median age

Office for National Statistics (https://www.ons.gov.uk)

Air quality data (Pollution
Climate Mapping)

UK Air information resources (https://uk-air.defra.gov.uk
data)

National emission totals DEFRA(https://webarchive.nationalarchives.gov.uk/
20200303104044/https://www.gov.uk/government/stat
emissions-of-air-pollutants)

This table summarizes publicly available data sources used for the analysis.
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England by April 26, 2020. Out of the total participants, 17 in-
dividuals were excluded from the final analysis due to incomplete
data.
2.2. Data sources for air pollution levels

Air pollution data were obtained from two sources. For the
initial region-level analysis, we collected annual aggregated air
quality (AQ) values determined by the European Environmental
Agency based on direct observations obtained from multiple
monitoring stations located across England. Due to incomplete or
obsolete observations for several pollutants, we restricted our
regional analysis to three major air pollutants, namely, nitrogen
dioxide, nitrogen oxide and ozone, across the prespecified regions
(Fig. 2). Nitrogen dioxide, nitrogen oxide and ozone AQ values are
reported in mg/m3 and represent the annual average of daily mea-
surements for each air pollutant from 2018 to 2019 in each specified
region. Air pollution data for the regional analysis could not be
temporally averaged across multiple years because of the large
inconsistencies in the data in the years prior to 2018. No data were
available for the year 2019 at the time of writing. The identification
of each monitoring station was matched to each available city by
accessing the Department for Environment, Food and Rural Affairs
(DEFRA) website (Fig. 1). This website contains a resource called the
DEFRA’s Air Quality Spatial Object Register, which allows users to
view and retrieve information on the air quality-related spatial and
non-spatial data objects from the UK’s Air Quality e-Reporting data
holdings. The annual average values of daily measurements for
each pollutant in each monitoring area were analysed to determine
the effects of toxin exposure on the number of SARS-CoV-2 cases
and deaths across England (Fig. 1).

For the analysis at the level of local authorities, we used the
Pollution Climate Mapping (PCM) data from the UK Air Information
Resources (Table 1). This repository contains information from
hundreds of air quality stations located across England for multiple
pollutant molecules (ozone, nitrogen oxides, PM2.5, PM10). All data
are shown as either annual average values of daily measurements
Download
date

Measuring units

region) April 9,
2020

Lab-confirmed cases per region up to and including
April 8, 2020

atistics/ April 9,
2020

Cumulative death counts per region up to and including
April 8, 2020

ges/deaths/
visional/

April 28,
2020

Cumulative death counts per local authority

LA) May 15,
2020

Cumulative cases counts per local authority

.europa.eu/ April 7,
2020

AQ values (mg/m3)

April 17,
2020

Regional and subregional population density in England
(person/km2). Age in years. Annual earnings in GBP.

/data/pcm- May 2,
2020

AQ values (mg/m3), except for ozone: days in which the
daily max 8-hr concentration is greater than 120 mg/m3

istics/
May 5,
2020

National emission totals by sector expressed in
thousands of tonnes of oil equivalent (kToE)

https://coronavirus.data.gov.uk/#region
https://www.england.nhs.uk/statistics/statistical-%20work-areas/covid-19-daily-deaths/
https://www.england.nhs.uk/statistics/statistical-%20work-areas/covid-19-daily-deaths/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending1may2020/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending1may2020/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending1may2020/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/deathsregisteredweeklyinenglandandwalesprovisional/weekending1may2020/
https://coronavirus.data.gov.uk/
https://www.eea.europa.eu/data-and-maps/data/aqereporting-8
https://www.eea.europa.eu/data-and-maps/data/aqereporting-8
https://www.ons.gov.uk
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants


Fig. 1. Analysis workflow.

Fig. 2. Regional heatmaps of COVID-19 and pollutants.
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for the year 2018 (single-year model) or temporally averaged levels
for the years 2014e2018 (multi-year model) to capture the multi-
year trajectory of historical change in air pollution in England. Air
pollutant levels are reported in mg/m3, except for ozone, whose
metric is the number of days on which the daily max 8-hr con-
centration is greater than 120 mg/m3. A detailed quality report
regarding this data is available at the following website: https://uk-
air.defra.gov.uk/assets/documents/reports/cat09/1903201606_
AQ0650_2017_MAAQ_technical_report.pdf. We obtained the
longitude and latitude of each local authority using OpenCage
Geocoder (https://opencagedata.com/). The air pollutant levels for
each authority was approximated by averaging 10 values nearest
the centre of authority. This area covers approximately 12 km2.
Detailed descriptions of the methodology and analysis workflow
are available in our GitHub repository. For the UK Biobank data, we
matched the location coordinate each participant reported to their
nearest modelled value. The level of each pollutant was measured
less than 2 km away from the self-reported address.

2.3. UK biobank data sources

We used data from the UK Biobank under application #60124.
Details regarding the geographical regions, recruitment processes,
and other characteristics have been previously described (Sudlow
et al., 2015),14, and are found on ukbiobank.co.uk. The UK Biobank
has received ethical approval from the North West e Haydock
Research Ethics Committee, 11/NW/0382 to gather data from par-
ticipants. A detailed list of the variables analysed in the present
study is presented in Supplementary Table 1 (https://m1gus.github.
io/AirPollutionCOVID19/). Notably, we defined hypertension using
the criteria of a diastolic blood pressure �90 mmHg OR systolic
blood pressure �140 mmHg. We assigned an average of annual
pollutant concentrations from the PCM data to each study subject,
on the basis of a six-digit postcode. Individual-level data were
collected from the UK Biobank on April 26, 2020. This dataset
contained information on individuals that tested positive for
COVID-19. No COVID-19 test data were available for UKB assess-
ment centers in Scotland and Wales, thus data from these centers
were not included.

2.4. Regional heatmaps

Heatmap legends were generated using GraphPad Prism 8
(www.graphpad.com), and regions are labelled with the mapped
colour values.

2.5. Statistical analysis

In our regional exploratory analysis, we fitted generalised linear
models to our data using COVID-19 deaths and cases as the out-
comes and nitrogen oxide, nitrogen dioxide and ozone as the ex-
posures of interest, adding the corresponding population density
values as a confounding variable. Population density (person/km2)
data correspond to subnational mid-year population estimates of
the resident population in England and excludes visitors or short-
term immigrants (<12 months). We modelled both the number of
cases and deaths using negative binomial regression analyses since
the response variables are overdispersed count data. We used the
same model type for our subregional analysis, adding mean annual
earnings and median age as confounding factors.

For the UK Biobank models, we fitted a binomial regression
model because the response variable, COVID-positive or -negative,
is defined as either 0 or 1.

Methods for assessing the fit of the model included residual
analyses, diagnostic tests, and information criterion fit statistics.
5

The goodness of fit of each regression model was determined using
the log-likelihood and Akaike Information Criterion (AIC) statistics.

For all models, we calculated the odds or risk ratios and their
95% confidence intervals to quantify the effects of the independent
variables on the response variables. The models were built using
the MASS package (www.stats.ox.ac.uk/pub/MASS4/) in R. The
comparison tables were generated using the Stargazer package
(Hlavac, 2018). The analysis source code, detailed quality checks
and all Supplementary material are available in GitHub (https://
github.com/M1gus/AirPollutionCOVID19). The analysis notebook
is available at the following link: https://m1gus.github.io/
AirPollutionCOVID19/. Statistical significance was defined as
p � 0.05.

3. Results

3.1. Links between regional nitrogen oxide and ozone levels and
COVID-19 in England

We analysed the associations between cumulative numbers of
COVID-19 cases and deaths with the concentrations of three major
air pollutants recorded between 2018 and 2019, when no COVID-19
cases were reported. Due to differences in data availability for each
air pollutant, we only included annual mean values of daily mea-
surements, which was the most consistent aggregation type re-
ported for all air pollutants described in this analysis. We started by
analysing publicly available data from seven regions in England
(Table 1). For each region, a minimum of 2000 SARS-CoV-2 in-
fections and 200 deaths were reported by PHE from February 1 to
April 8, 2020, which was approximately two weeks after the UK
was placed into lockdown (Fig. 1).

The spatial pattern of COVID-19 deaths matched the
geographical distribution of COVID-19-related cases, with the
largest numbers of COVID-19 deaths occurring in London and in the
Midlands (Fig. 2). According to previous studies, those two areas
present the highest annual average concentration (mg/m3) of ni-
trogen oxides (Pannullo et al., 2017). In addition, ground-level
ozone concentrations have been previously shown to vary signifi-
cantly with latitude and altitude, depending on the concentration
of ozone in the free troposphere, long-range transport and emis-
sion of its precursor (Hagenbjork et al., 2017). Therefore, we sought
to determine if spatial variations in the levels of nitrogen oxides, in
particular nitrogen dioxide (NO2) and nitrogen oxide (NO), as well
as ground-level ozone concentrations in England are associated
with increased numbers of COVID-19 infections and mortality. We
applied a negative binomial regression model to estimate the as-
sociation between each air pollutant with the cumulative number
of both COVID-19 cases and deaths at the regional level
(Supplementary Tables 2 and 3). The model was chosen based on
the data type (count data) and log likelihood and AIC scores (Akaike
et al., 1998). Population density, a confounding factor, was added to
this model as an independent variable to account for differences in
the number of inhabitants across regions. The levels of nitrogen
oxide and nitrogen dioxide are significant predictors of COVID-19
cases (p < 0.05), independent of the population density
(Supplementary Table 2). We next applied a similar method to
assess the association with the number of COVID-19 deaths
(Supplementary Table 3). Ozone, nitrogen oxide and nitrogen di-
oxide levels are significantly associated with COVID-19 deaths,
together with the population density.

Taken together, the negative binomial regressionmodels of both
COVID-19 cases and deaths (Supplementary Tables 2 and 3) show
that nitrogen dioxide, nitrogen oxide and ozone levels are signifi-
cant predictors of COVID-19-related death, after accounting for the
population density. This study provides the first evidence that

https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1903201606_AQ0650_2017_MAAQ_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1903201606_AQ0650_2017_MAAQ_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1903201606_AQ0650_2017_MAAQ_technical_report.pdf
https://opencagedata.com/
https://m1gus.github.io/AirPollutionCOVID19/
https://m1gus.github.io/AirPollutionCOVID19/
http://www.graphpad.com
http://www.stats.ox.ac.uk/pub/MASS4/
https://github.com/M1gus/AirPollutionCOVID19
https://github.com/M1gus/AirPollutionCOVID19
https://m1gus.github.io/AirPollutionCOVID19/
https://m1gus.github.io/AirPollutionCOVID19/
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SARS-CoV-2 cases and deaths are associated with regional varia-
tions in air pollution across England.

Nitrogen oxides are the main contributors to increased numbers
of COVID-19 deaths and cases in the early phase of the pandemic.

We next sought to increase both the resolution and accuracy of
our analysis. We gathered data on COVID-related cases and deaths
from all the local authorities in England and expanded the number
of the pollutant species (n¼ 5). We also retrieved the longitude and
latitude for each local authority. The levels of ozone, nitrogen oxide,
nitrogen dioxide and PM with aerodynamic diameters of 2.5 and
10 mm (PM2.5 and PM10, respectively) are reported as averages of
the 10 values measured nearest the centre of each local authority in
England. Local authority-level population density, mean annual
earnings and median age were included as potential confounding
variables (Fig. 1). We calculated the estimated regression co-
efficients of each variable and their respective mortality and
infectivity rate ratios (Fig. 3 and Supplementary Tables 4 and 5)
relative to the different air pollutants mentioned. In our single-year
model (2018), higher nitrogen dioxide levels predict an increase in
COVID-19 deaths and cases in the early phase of the pandemic
(Fig. 3). Moreover, the levels of nitrogen dioxide have a infectivity
rate ratio of 1.033 [95% confidence interval (CI): 1.043e1.022] and
mortality rate ratio of 1.031 [95% CI: 1.040e1.021], indicating that a
1 mg/m3 increase in nitrogen dioxide concentration in 2018 was
associated with 3.3% more cases and 3.1% more deaths in England.
Similar to nitrogen dioxide, the levels of nitrogen oxides show
mortality and infectivity rate ratios of approximately 1.01 (Fig. 3).
The incidence rate ratios of cases and deaths for ozone levels are
less than 1, indicating that higher ozone levels lead to lower
numbers of deaths and cases. PM2.5 and PM10 are negatively asso-
ciated with the number of cases, and they are not significant pre-
dictors of the number of COVID-19-related deaths based on 2018 air
pollution data. To determine the effect of spatial-temporal varia-
tions in air pollution exposure in England, we further increased the
temporal scale of our analysis to include temporally averaged air
pollution data for the years 2014e2018 (Fig. 3). Our results show
that the estimated effect of air pollution on COVID-19 mortality and
infectivity remains roughly constant over the multi-year modelling
period (Fig. 3). Levels of nitrogen oxides and nitrogen dioxide
remain significantly associated with an increase in COVID-19
infectivity [OR: 1.012 95% CI: 1.016e1.008 and OR: 1.020 95% CI:
1.027e1.013, respectively] and mortality [OR: 1.015 95% CI:
1.019e1.011 and OR: 1.025 95% CI: 1.032e1.019, respectively]
approximately one month after England was placed on lockdown
(Fig. 3). Similarly, we found that an increase in long-term average of
ozone is negatively associated with both COVID-19 mortality [OR:
0.832 95% CI: 0.864e0.801] and infectivity [OR: 0.774 95% CI:
0.806e0.743]. In the case of PM2.5 and PM10, we found a negative
Fig. 3. Cases and deaths in local authorities.
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and statistically significant association between the long-term
average of these air pollutants and COVID-19 cases [OR: 0.962
95% CI: 0.981e0.944 and OR: 0.968 95% CI: 0.981e0.955, respec-
tively] but not for deaths.

Levels of PM pollutants and nitrogen oxides are associated with
an increase in SARS-CoV2 infections in UK Biobank participants
living in England.

We next used information from the UK Biobank to further assess
whether people exposed to increased pollution levels are more
likely to contract SARS-CoV-2 at the individual scale. This resource
contains data frommore than half a million UK volunteers recorded
across multiple years. We obtained COVID-19 data reported by the
UK Biobank up to and including April 26, 2020. This dataset con-
tained COVID-19 test results for 1464 participants, of whom 664
were diagnosed as positive for COVID-19. The location of each
subject included in the analysis is shown in Fig. 4A. Compared to
the local authority case model, the UK Biobank analysis provides a
higher resolution air pollution estimate (less than 2 km away from
their self-reported address) and includes potentially asymptomatic
cases.

In our model, we accounted for a list of confounding variables
(Supplementary Table 1), which we selected based on a previous
study (Williamson et al., 2020). Our analysis identified PM2.5 and
PM10 as significant predictors of increased SARS-CoV-2 infectivity
based on our single-year exposure model (Fig. 4B). The odds ratios
are 1.127 [CI: 1.173e1.083] and 1.078 [CI: 1.109e1.048] for PM2.5 and
PM10, respectively (Fig. 4B). When the long-term averages of PM2.5

and PM10 levels were considered, the estimated coefficients remain
positive and statistically significant, with a similar magnitude to
those identified based on 2018 air pollution data alone (Fig. 4B).
That is, we found that a single unit increase in PM2.5 levels was
associated with a statistically significant 12% increase in COVID-19
cases, regardless of the primary exposure measure (i.e., single year
or multiyear exposure). For PM10, a one-unit increase was associ-
ated with approximately 8% more COVID-19 cases in the UK bio-
bank. Interestingly, these results are inconsistent with data
obtained from the subregional models, where PM was not found to
predict the number of cases, which may be related to the lack of
individual-level data. Nonetheless, both our subregional and
individual-level models suggest that the levels of nitrogen oxides
and dioxide were positively associated with COVID-19 infectivity,
with an odds ratio of approximately 1.03 for both the single-year
and multi-year model (Fig. 4B). Based on our results, we predict
that an increase of only 1m3 in the long-term average of nitrogen
dioxide levels increased COVID-19 cases by 4.5% [95% CI: 5.99%e
3.05%] while a similar increase in nitrogen oxides was associated
with approximately 2% more cases [95% CI: 2.92%e1.35%].
Conversely, ozone levels are not significant predictors of infectivity
at the individual level, although they were significantly associated
with deaths and cases at the subregional level (Figs. 3 and 4B). In
addition to air pollution, we observed an association between
current smokers and a lower likelihood of COVID-19 positivity than
previous and non-smokers. However, according to our model,
population density and predisposing health factors, such as age,
sex, diabetes and a previous history of cancer and lung problems,
are not predictors of the probability of being infected
(Supplementary Table 6).

4. Discussion

Here, we identified associations between air pollution and
COVID-19 deaths and cases in England, expanding on previous
evidence linking high mortality rates in Europe with increased
toxic exposure to air pollutants (Conticini et al., 2020; Ogen, 2020).
Air pollution exposure and health impact estimates have been



Fig. 4. Distribution and infectivity data from the UK Biobank. A) Distribution of UK Biobank subjects included in the current analysis. B) Odds ratios and respective 95% CIs for the
relationship between individual exposure to several air pollutants and the number of lab-confirmed COVID-19 cases. Triangles refer to the results obtained when the long-term
average (five years, 2014e2018) in the concentration of each air pollutant was taken into account and circles refer to the results obtained when the primary measure of expo-
sure was air pollution levels in 2018. Red indicates significant associations (p � 0.05), while grey indicates a lack of significance (p > 0.05).
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suggested to mainly depend on the resolution at which they are
evaluated (Stroh et al., 2007). Therefore, we first calculated the
effects of air pollution on COVID-19 mortality and spread using
regional, coarse resolution data, and then high-resolution, indi-
vidual-level observations obtained from the UK Biobank. By
employing finer resolution grids, we found statistically significant
evidence that an increase in the long-term average of PM2.5 is
associated with the largest increase in COVID-19 infectivity in
England.

According to our initial findings, regional variations in nitrogen
oxide and ozone concentrations in England predict the numbers of
COVID-19 cases and deaths, independent of the population density.
However, overall uncertainties for modelled exposure estimates at
the regional scale (Stroh et al., 2007) led us to obtain increased
spatial resolution. Using highly granular local authority-level
measurements, we found that a 1 mg/m3 increase in the long-
term average of nitrogen oxides and dioxide levels was associated
with a 1.5% and 2.5% increase in COVID-19 related mortality,
respectively. Notably, these findings are consistent with studies
conducted during the previous SARS outbreak, where long-term
exposure to air pollutants predicted adverse outcomes in patients
infected with SARS in China (Cui et al., 2003). Although nitrogen
oxides are key ozone precursors, the relationship between these
gases and ozone is nonlinear in ozone chemistry (Kelly and Gunst,
1990). Therefore, the negative associations between ozone levels
and COVID-19 infection andmortality may be attributed to reduced
nitrogen oxide conversion to ozone in urban areas, a phenomenon
previously reported for areas with heavy traffic (Hagenbjork et al.,
2017; Melkonyan and Kuttler, 2012). In addition, given the highly
reactive nature of ozone, the inverse relationship between ozone
levels and COVID-19 is consistent with increased nitric oxide
scavenging close to points of emissions (Lefohn et al., 2010).

Although the molecular mechanisms underlying the relation-
ship between pollutant exposure and COVID-19 remain to be
determined experimentally, they are hypothesised to include the
stimulation of chronic, background pulmonary inflammation
(Ogen, 2020). Chamber studies have shown that ambient nitrogen
dioxide induces infiltration of the airways by inflammatory cells in
healthy volunteers (Ghio et al., 2000; Sandstr€om et al., 1989
(Sandstr€om et al., 1991),). In addition, exposure to these pollut-
ants may inhibit pulmonary antimicrobial responses, reducing
7

clearance of the virus from the lungs and promoting infectivity.
Reduced phagocytic function is well documented after the expo-
sure of macrophages to PM (Becker et al., 2003; Lundborg et al.,
2006; Selley et al., 2020) and is suggested to be the mechanism
that enhances viral infection in mice exposed to nitrogen dioxide
(Rose et al., 1988). Acute exposure to nitrogen oxides has also been
shown to decrease pulmonary function by inducing systemic
oxidative stress (Guarnieri and Balmes, 2014). Both the MESA-Air
and Framingham cohorts demonstrated that long-term exposure
to air pollution is linked to chronic reductions in endothelial
function (Krishnan et al., 2012; Wilker et al., 2014). Endothelial
dysfunctionmay result in changes in arterial stiffness and afterload,
which may translate into persistent hypertension. In this context,
Faustini and colleagues (Faustini et al., 2014) reported that a 10 mg/
m3 increase in the annual concentration of two traffic-related
pollutants, nitrogen dioxide and PM2.5, is associated with large
increases in both respiratory and cardiovascular mortality. As res-
piratory and cardiovascular diseases represent potential risk factors
for COVID-19 related mortality, these studies support the hypoth-
esis that long-term exposure to several air pollutants enhances the
risk of severe COVID-19 outcomes by weakening the respiratory,
cardiovascular and immune systems, thus facilitating viral invasion
and severe outcomes (Conticini et al., 2020; Kulkarni et al., 2020).

Using individual-level data, our UK Biobank model indicated
that exposure to PM2.5 and PM10 increases the risk of COVID-19
infection, in addition to nitrogen oxides, which were previously
identified as major contributors to COVID-19 infectivity in the
regional and subregional analysis. The observation that exposure to
PM2.5 and PM10 increases the risk of COVID-19 infection conforms
to the hypothesis that viruses attach to air pollutants (Reche et al.,
2018), potentially explaining the propagation of SARS-CoV-2 and its
infectious capacity. Nonetheless, the results of our individual-level
analysis are inconsistent with our local authority models, where
PM2.5 and PM10 were found to be negatively associated with the
infectivity rate. In this context, it must be emphasised that the
ecological design of our subregional analysis likely led to some
degree of exposure misclassification. Previous studies have shown
that the temporal and spatial scales of exposure assessment may
influence the magnitude of reported associations between air
pollutant exposure and mortality (Crouse et al., 2020). For instance,
Crouse and colleagues (Crouse et al., 2020) observed that the
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magnitude of association between PM2.5 and mortality in the US is
sensitive to the spatial scale of the assessment, with stronger as-
sociations found at smaller spatial scales particularly for respiratory
and lung cancer mortality. In support of our individual-level find-
ings, Cole and colleagues (Cole et al., 2020) recently used a similar
approach to investigate the relationship between air pollution and
COVID-19 using subregional data from over 355 municipalities in
the Netherlands. Their analysis showed that, after accounting for a
wide range of confounders, including socioeconomic and socio-
demographic factors, a one unit increase in PM2.5 concentrations is
associated with 9.4 more Covid-19 cases.

In addition, our findings are comparable to the observations of
Wu et al. (2020) in the US and another study from Northern Europe
where levels of PM2.5 were found to be strongly associated with
COVID-19 incidence, after adjusting for multiple demographic and
health-related confounders (Andree, 2020). However, this report is
the first study to employ individual-level data to assess the rela-
tionship between air pollution exposure and COVID-19, after con-
trolling for individual characteristics such as age and underlying
health conditions obtained by the UK Biobank. By modelling air
quality estimates based on the nearest available measurements to
individuals’ residences, our modelling strategy helped to minimise
the potential for ecological bias and exposure misclassification er-
rors (Miller et al., 2007). Furthermore, although considerable
anecdotal evidence suggests that air quality is associated with
COVID-19 outcome (Conticini et al., 2020; Ogen, 2020; Wu et al.,
2020), most studies to date have been unable to accurately quan-
tify the number of COVID-19 cases due to limited testing capacity.
In England, government guidelines have prioritised testing for
symptomatic COVID-19 patients, meaning that official figures do
not include the growing number of people who are asymptomatic
or are self-isolating at home due to mild COVID-19 symptoms. In
contrast, all UK Biobank participants included in this study were
subjected to COVID-19 testing since the beginning of the pandemic.
Because a large proportion of COVID-19 infections are asymptom-
atic (Day, 2020; Nishiura et al., 2020), the UK Biobank model pro-
vides greater sensitivity to the analysis of infection rates compared
to ecological models. We suggest that these differences may partly
explain the conflicting results for PM2.5 and PM10 observed be-
tween our subregional and individual-level models.

Despite some notable advantages in inferring the relationship
between COVID-19 infectivity and air quality, it is important to
acknowledge that our individual-level analysis presented some
limitations. First, our assessment of exposure remains inherently
limited because the degree to which ambient monitoring stations
represent the exposure of the subject is imperfect. For instance, we
were unable to assess microclimate differences in exposure or de-
tails regarding the subjects’ activity and location, such as the time
spent in traffic and indoors. Therefore, questions remain concern-
ing the generalisability of the above findings, as microenviron-
mental (e.g., work, home, school, etc.) and behavioural factors (e.g.,
mobility) profoundly affect an individual’s exposure to air pollution
(Ozkaynak et al., 2013). Though the incorporation of these factors is
problematic in themidst of a pandemic, futurework should address
the confounding effects of additional variables to obtain more ac-
curate PM exposure estimates (Pansini and Fornacca, 2020; Zhu
et al., 2020b). Second, it has become clear over the course of the
pandemic that confounding factors in addition to those considered
in the current study, such as ethnicity, are also associated with
COVID-19 infectivity and mortality rates (Brandt et al., 2020;
Dutton, 2020). A caveat to the use of UK Biobank is the limited
representation of ethnic minority groups because the large major-
ity of the participants are of white ethnicity. A recent report by the
ONS suggested that the correlation between air pollution and
COVID-19 mortality in England becomes weaker once ethnicity is
8

controlled for as a confounding variable (Dutton, 2020). This
finding suggests that either air pollution leads to disproportionate
outcomes in ethnic minority groups or that the estimated rela-
tionship between air pollution and COVID-19 is confounded by the
strong relationship between the distribution of ethnic groups in
England and highly polluted areas. Therefore, our results should be
interpreted in the context of our modelling design and future
studies should address the relationship between COVID-19 and air
pollution after taking into account the confounding effect of
ethnicity.

Our findings suggest that long-term exposure to poor AQ in-
creases the risks of COVID-19 infection and mortality in the UK, in
line with the results obtained from recent studies conducted in
northern Italy (Conticini et al., 2020), Europe (Cole et al., 2020;
Ogen, 2020), and the USA (Liang et al., 2020; Wu et al., 2020). Our
results provide compelling evidence of a statistically significant
relationship between nitrogen oxides and dioxide levels and
COVID-19 mortality at the regional and subregional level. This
relationship persists after controlling for individual-level charac-
teristics and indicates that prolonged exposure to these urban
traffic-related air pollutants may increase the risk of severe COVID-
19 outcome. Our individual-level models further indicate that an
increase of 1 m3 the long-term average of PM2.5 was associated
with an increase of 12% in COVID-19 cases in England. A comparable
effect was observed for PM10, whereby a one-unit increase was
associated with an approximately 8% increase in COVID-19 cases.
Future studies may expand on these observations and address
additional confounders, including comorbidities, race, meteoro-
logical trends and differences between regional health regulations
and their ICU capacities. In light of the evidence presented herein,
we believe that air pollution factors should be considered when
estimating the SARS-CoV-2 infection rate (R0). Our results
emphasise the importance of strengthening efforts to tighten air
pollution regulations for the protection of human health, both in
relation to the COVID-19 pandemic and for the mitigation of po-
tential future diseases.

This flowchart summarizes how raw data were extrapolated,
processed and analysed. Blue indicates data sources, whereas red
and green indicate the type of model employed and the final
output, respectively. Population density data (person/km2) were
derived from ONS and used to account for region-specific differ-
ences in population size across England; COVID-19 case and death
data were obtained from PHE, NHS and ONS, respectively. Air
pollution data from eachmonitoring stationweremanually curated
using DEFRA’s Air Quality Spatial Object Register and aggregated
into statistical regions. ONS, Office for National Statistics; PHE,
Public Health England; NHS, National Health Service; EEA, Euro-
pean Environmental Agency.

Regional English heatmaps of reported deaths and diagnosed
COVID-19 cases through April 8, 2020 (top row), as well as AQ
values for the indicated pollutants (bottom row).

Summary of infectivity and mortality rate ratios and respective
95% CIs at the local authority level. Triangles refer to the results
obtained when the long-term average (five years, 2014e2018) in
the concentration of each air pollutant was taken into account
whereas circles refer to the results obtained when the primary
measure of exposure was air pollution levels in 2018. Red indicates
significant associations (p � 0.05), while grey indicates a lack of
significance (p > 0.05). See also Supplementary Table 4 for a
detailed description of the model.
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